
An N-mode squeezed vacuum state in Fock space as an entangled state

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 10311

(http://iopscience.iop.org/1751-8121/40/33/022)

Download details:

IP Address: 171.66.16.144

The article was downloaded on 03/06/2010 at 06:10

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/33
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 10311–10318 doi:10.1088/1751-8113/40/33/022

An N-mode squeezed vacuum state in Fock space as an
entangled state

Gang Ren1, Jiangang Qi2 and Tong-qiang Song1

1 Department of Physics, Ningbo University, Ningbo 315211, People’s Republic of China
2 Department of Mathematics, Shandong University at Weihai, 204209,
People’s Republic of China

Received 28 May 2007, in final form 5 July 2007
Published 1 August 2007
Online at stacks.iop.org/JPhysA/40/10311

Abstract
Using the technique of integration within the ordered product (IWOP) of
operators, we show that the operator U = exp

[
ir
(∑n−1

i=1 QiPi+1 + QnP1
)]

is an N-mode squeezing operator for the N-mode quadratures exhibiting the
standard squeezing. The corresponding squeezed vacuum state in N-mode
Fock space is derived, and the entanglement involved in such a state is also
explained. We present an optical network for producing the N-mode squeezed
state.

PACS numbers: 42.50.Dv, 03.65.−w, 42.50.−p

1. Introduction

The entangled states and the entanglement have been important topic since 1970s due to
their wide applications in optical communication, quantum teleportation and quantum state
engineering [1–6]. Many efforts have been made to find new entangled states and a new
form of squeezing operators so that new experimental implementation could be proposed
[7–9]. In [10], the two-mode squeezed state, which is composed by the idler mode and
signal mode resulting from a parametric down conversion amplifier, is a typical entangled
state of continuous variable. Theoretically, it is constructed by the two-mode squeezing
operator S acting on the vacuum state |00〉, i.e., S|00〉 = sec hλ exp

(−a
†
1a

†
2 tanh λ

)|00〉, where

λ is a squeezing parameter. Using the relation between the Bose operators
(
ai, a

†
i

)
and the

coordinate, momentum operators Qi = 1√
2

(
ai + a

†
i

)
, Pi = 1

i
√

2

(
ai − a

†
i

)
, Hongyi Fan found

a new operator S = exp[iλ(Q1P2 + Q2P1)], which actually squeezes the entangled state |η〉
[11, 12]. In [13], he extended his idea to three-mode and proved U = exp

[
ir
(
Q1P2 + Q2P3 +

Q3P1
)]

is also a squeezing operator in the three-mode Fock space, and its corresponding
squeezed vacuum state is also an entangled state. An interesting problem thus naturally arises.
Can Fan, s idea be extended to the N-mode case? That is to say, is the unitary operator
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U = exp
[
ir
(∑n−1

i=1 QiPi+1 + QnP1
)]

also a squeezing operator in the N-mode Fock space? If
yes, then what is its corresponding squeezed vacuum state? Is it also an entangled state?

The N-mode squeezing operator is a larger symmetry algebra of the Virasoro algebra. To
answer these questions we must first derive the normal product form of U and then analyze
if the squeezing exists, and how behaves the state U |0〉 (where |0〉 stands for the N-mode
vacuum state). The paper is organized as follows. In section 2, we use the IWOP technique to
expand normally ordered U. In sections 3–4 we examine the properties of the state U |0〉, and
find that it just makes the variances of the N-mode quadrature operators behave as that of the
two-mode case. In section 5 we discuss how to design an optical network to realize the new
N-mode squeezed vacuum state.

2. Normal product form of U

Because operators Q1P2,Q2P1, . . . , Qn−1Pn and QnP1 neither commute with each other nor
make any close relation with the Lie algebra by themselves, it seems difficult to disentangle
U. Thus we must appeal to the IWOP technique. We rewrite U as

U = exp[irQiAijPj ],

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1
1 0 0 . . . 0

 , Qi = (Q1,Q2, ...Qn), Pj =


P1

P2
...

Pn

 , (1)

where the repeated indices represent the Einstein summation notation and A is an n×n matrix.
Using the Baker–Hausdorff formula we see

U−1QkU = (e−rÃ)kiQi, U−1PkU = (e−rA)kiPi . (2)

Operating U on the N-mode coordinate eigenstate |−→q 〉 = π−n/4 exp
[− 1

2
−̃→q −→q +

√
2−̃→q a† −

1
2 ã†a†]|0〉, (where ã† = (

a
†
1, a

†
2, . . . , a

†
n

)
, −̃→q = (q1, q2, . . . , qn), Ã, a† and −→q are the

transpositions of ã†, −̃→q ,A, respectively.), i.e.,

U |−→q 〉 = |�|1/2|�−→q 〉, � = e−rÃ, |�| ≡ det �, (3)

and using

U =
∫

dnqU |−→q 〉〈−→q | = |�|1/2
∫

dnq|�−→q 〉〈−→q |, U † = U−1, (4)

we have

U−1QkU = |�|
∫

dnqU |−→q 〉〈�−→q |Qk

∫
dnq ′U |�−→

q ′ 〉〈−→q ′ | = (�Q)k, (5)

which is consistent with equation (2). Thus U can be expressed in the coordinate representation,

U = exp[irQiAijPj ] =
√

det e−rÃ

∫
dnq|�−→q 〉〈−→q |. (6)

Using the IWOP technique, we put U into a normal ordering form

U = π−n/2|�|1/2
∫ ∞

−∞
dnq : exp

[
−1

2
−̃→q (1 + �̃�)−→q +

√
2−̃→q (�̃a† + a)

− 1

2
(̃aa + ã†a†) − ã†a

]
. (7)
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By the mathematical formula∫ ∞

−∞
dnx exp[−x̃Fx + x̃v] = πn/2(det F)−1/2 exp

[
1

4
ṽF−1v

]
, (8)

we perform the integration in equation (7) and obtain the explicit normal ordering form of U:

U = |�|1/2|N |−1/2 exp
[

1
2 ã†(�N−1�̃ − I )a†

]
: exp[ã†(�N−1 − I )a] :

exp
[

1
2 ã(N−1 − I )a

]
, (9)

where N = 1
2 (I + �̃�), �̃ = exp(−rA),� = exp(−rÃ).

3. New N-mode squeezed vacuum state

Operating U in equation (9) on the N-mode vacuum state leads us to the new N-mode squeezed
vacuum state

U |0〉 = |�|1/2|N |−1/2 exp
[

1
2 ã†(�N−1�̃ − I )a†]|0〉. (10)

In this section we proceed to give the explicit expression of U |0〉.
When A is an even order, the eigenvalues of −A are

λm = e2mπ i/n (n = 2p); m = 1, 2, . . . , n, p ∈ N, (11)

and the corresponding eigenvectors are
1

−λm

...

(−λm)n−1

 , m = 1, 2, . . . , n. (12)

Then we have

N = 1

2
(I + �̃�) = 1

2n


hn h1 h2 · · · hn−1

h1 hn h1 · · · hn−2

· · · · · · · · · · · · · · ·
hn−1 hn−2 hn−3 · · · hn

 = 1

2n
G,

hk = gk, hn = n + gn, gk = (−1)k
n∑

m=1

cos
2mkπ

n
e2µmr , (13)

µm = Rλm = cos
2mπ

n
, gk = gn−k, 1 � k � n.

Let

f (λ) = hn + h1λ + h2λ
2 + · · · + hn−1λ

n−1, B =


1 1 · · · 1
λ1 λ2 · · · λn

· · · · · · · · · · · ·
λn−2

1 λn−2
2 · · · λn−2

n

λn−1
1 λn−1

2 · · · λn−1
n

 , (14)

the explicit expression of f (λj ) is

f (λj ) = n +
1

2

n∑
k=1

n∑
m=1

[
e(1+ 2(m+j)

n
)kπ i + e(1+ 2(j−m)

n
)kπ i
]

e2µmr

= n(1 + e2µp+j r ), 1 � j � 2p. (15)
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Then equation (13) yields

det N =
(

1

2n

)n

det G = 1

2n

n∏
j=1

(1 + e2µj r ). (16)

It is easy to see GB = BJ, J = diag(f (λ1), f (λ2), . . . , f (λn)) and G−1 = BJ−1B−1. Now
using equations (14) and (15), we have

G−1 = 1

n2



∑n
j=1

1
1+e2µp+j r

∑n
j=1

λj

1+e2µp+j r · · · ∑n
j=1

λn−1
j

1+e2µp+j r∑n
j=1

λj

1+e2µp+j r

∑n
j=1

1
1+e2µp+j r · · · ∑n

j=1
λn−2

j

1+e2µp+j r

...
...

...
...∑n

j=1
λn−1

j

1+e2µp+j r

∑n
j=1

λn−2
j

1+e2µp+j r · · · ∑n
j=1

1
1+e2µp+j r


. (17)

For N−1 = 2nG−1 and �N−1�̃ − I = I − N−1, then

ã†N−1a† = 2

n

n∑
m,j,k=1

R
(
λ

j−m

k

)
1 + e2µp+kr

a†
ma

†
j = 2

n

n∑
m,j,k=1

(
cos 2kπ

n

)j−m

1 + e2µp+kr
a†

ma
†
j . (18)

It follows that

U |0〉 = C exp

[
1

2
ã†(I − N−1)a†

]
|0〉

= C exp

−1

2

n∑
m=1

a2
m +

1

n

n∑
m,j,k=1

(
cos 2kπ

n

)j−m

1 + e2µp+kr
a†

ma
†
j

 |0〉, (19)

where C = |�|1/2|N |−1/2 = [ 1
2n

∏n
j=1(1 + e2µkr )

]− 1
2 .

Especially, when er → 0 ,

U |0〉|r→−∞ ∼ exp

−1

2

n∑
m=1

a†2
m +

1

n

n∑
m,j,k=1

(cos 2kπ)j−ma†
ma

†
j

 |0〉 ≡ |〉se. (20)

Similarly, if n is an odd number, the eigenvalues of −A are

λm = e(1+2m)π i/n, m = 1, 2, . . . , n, n = 2p + 1. (21)

Using

f (λj ) = n(1 + e2µp+j r ), 1 � j � 2p + 1,

B =


1 1 · · · 1
−λ1 −λ2 · · · −λn

· · · · · · · · · · · ·
(−λ1)

n−2 (−λ2)
n−2 · · · (−λn)

n−2

(−λ1)
n−1 (−λ2)

n−1 · · · (−λn)
n−1

 , (22)

and G−1 = BJ−1B−1, we have

G−1 = 1

n2



∑n
j=1

1
1+e2µp+j r

∑n
j=1

−λj

1+e2µp+j r · · · ∑n
j=1

(−λj )
n−1

1+e2µp+j r∑n
j=1

−λj

1+e2µp+j r

∑n
j=1

1
1+e2µp+j r · · · ∑n

j=1
(−λj )

n−2

1+e2µp+j r

...
...

...
...∑n

j=1
(−λj )

n−1

1+e2µp+j r

∑n
j=1

(−λj )
n−2

1+e2µp+j r · · · ∑n
j=1

1
1+e2µp+j r

 . (23)
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It then follows

ã†N−1a† = 2

n

n∑
m,j,k=1

(−1)j−m
R
(
λ

j−m

k

)
1 + e2µp+kr

a†
ma

†
j = 2

n

n∑
m,j,k=1

[− cos (1+2k)π

n
)
]j−m

1 + e2µp+kr
a†

ma
†
j , (24)

and

U |0〉 = |�|1/2|N |−1/2 exp

−1

2

n∑
m=1

a†2
m +

1

n

n∑
m,j,k=1

[− cos (1+2k)π

n

]j−m

1 + e2µp+kr
a†

ma
†
j

 |0〉, (25)

where C = |�|1/2|N |−1/2 = [ 1
2n

∏n
j=1(1 + e2µkr )

]− 1
2 .

Especially, when er → 0,

U |0〉|r→−∞ ∼ exp

−1

2

n∑
m=1

a†2
m +

1

n

n∑
m,j,k=1

[
− cos

(1 + 2k)π

n

]j−m

a†
ma

†
j

 |0〉 ≡ |〉so. (26)

Comparing equations (20) and (26), we obtain

U |0〉|r→−∞ ∼ exp

2

n

n∑
k>l=1

a
†
l a

†
k −

n∑
j=1

n − 2

2n

(
a
†
j

)2 |0〉 ≡ |〉s , (27)

where n is an arbitrary integer.
It is interesting to observe that |〉s is just the common eigenvector the N-compatible

Jacobian operators in an N-body case with zero eigenvalue [14], i.e.,

P |〉s =
n∑

i=1

pi |〉s = 0; ξj |〉s =


 n∑

k=j+1

µk

−1
n∑

k=j+1

µkQk − Qj

 |〉s = 0,

as [P, ξj ] = 0, j = 1, 2, . . . , n − 1, µk = mk/M,M = ∑n
i=1 mi . Since the common

eigenvector of N-compatible Jacobian operators is an entangled state, the state |〉s is also an
entangled state. This state is experimentally attainable by the use of momentum-squeezed
coherence states and position-squeezed coherence states and balanced optical BSs, it tends
toward the general perfect EPR-type entangled state in the limit of infinite squeezing. The
details will be discussed in section 5.

4. Variances of the n-mode quadratures

The quadratures in the N-mode case should be defined as

X1 = 1√
2n

n∑
k=1

Qk, X2 = 1√
2n

n∑
k=1

Pk, [X1, X2] = i

2
. (28)

The expectation values of the quadratures in the state |〉s are 〈X1〉 = 〈X2〉 = 0; we see that the
corresponding variance is

(�X1)
2 =s

〈∣∣x2
1

〉
s
= 1

4n

∑
ji

(��̃)ij = 1

4
e−2r , (29)

(�X2)
2 =s

〈∣∣x2
2

∣∣〉
s
= 1

4n

∑
ji

(��̃)−1
ij = 1

4
e2r , (30)

which has the similar standard form to the two-mode case. Equations (29) and (30) clearly
indicate that U is the correct N-mode squeezing operator for the N-mode quadratures in
equation (28).
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5. Optical network for producing the state |〉s

The basic operation of optical devices (beam splitters, optical fiber, and phase shifter) based
on quantum optics components is the transformation of a set of incoming states into another
set by a unitary transformation. Such transformations can be performed by using optical
networks. In this section we design such an optical network that the light beams (one mode
of zero-position eigenstate |x = 0〉1 and the other modes of zero-momentum eigenstates
|p = 0〉2 ⊗ |p = 0〉3 ⊗ · · · ⊗ |p = 0〉n) entering the N-input ports of this network will be
changed into an N-partite entangled state. That is to say that the network plays the role of
transforming N-single-mode-squeezed states (n − 1 light fields maximally squeezed in the P
direction and one light field in the X direction) incident on the network to the entangled state
|〉s in equation (27). In the Fock space |x = 0〉i and |p = 0〉i are expressed as

|x = 0〉i � exp

(
−1

2
a
†2
i

)
|0〉i ,

(31)

|p = 0〉i � exp

(
1

2
a
†2
i

)
|0〉i .

Hence the function of this optical network can be represented by a unitary operator R, and R
should meet the following requirement:

R|x = 0〉1 ⊗ |p = 0〉2 ⊗ |p = 0〉3 ⊗ · · · ⊗ |p = 0〉n → |〉s

= exp

2

n

n∑
k>l=1

a
†
l a

†
k −

n∑
j=1

n − 2

2n

(
a
†
j

)2 |0〉, (32)

which is just equation (27) as indicated. That is to say

R
(
a
†2
1 − a

†2
2 − · · · − a†2

n

)
R−1 = Rã†Ea†R−1 = ã†Ba†, (33)

where

E =


1 0 . . . 0
0 −1 . . . 0
...

...
...

...

0 0 . . . −1

 ; B = 1

n


2 − n 2 . . . 2
2 2 − n . . . 2
...

...
...

...

2 2 . . . 2 − n

 .

In order to solve R, we suppose

Rã†R−1 = ã†G̃, RaR−1 = Gijaj = a´
i . (34)

Then from equation (34), we see that G must satisfy the matrix equation

G̃EG = B. (35)

Its solution is an orthogonal matrix

G =


1√
n

√
n−1
n

0 . . . 0

1√
n

− 1√
n(n−1)

√
n−2
n−1 . . . 0

...
...

...
...

...
1√
n

− 1√
n(n−1)

− 1√
(n−1)(n−2)

. . . − 1√
2

 , (36)
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where Gi,1 = 1√
n
, (i = 1, 2, . . . , n);Gi,i+1 =

√
n−i

n−i+1 , (i = 1, 2, . . . , n − 1),Gij =
− 1√

(n−j+1)(n−j+2)
, (i = 2, 3, . . . , n, j = 2, 3, . . . , i), the others Gij = 0.

The corresponding R may be constructed by the coherent state representation and the
orthogonal matrix G:

R =
∫ n∏

i=1

d2zi

π
|Gijzij 〉〈zi |

=
∫ n∏

i=1

d2zi

π
: exp

 n∑
i=1

−|zi |2 +
n∑

j=1

a
†
i Gij zj

 + z∗
i ai − a

†
i ai

 :

=: exp
[
ã
†
i (G − I )a

]
:= exp

[
ã
†
i (InG)a

]
. (37)

To obtain the optical transfer evolution in equations (33) and (34), we extract an interacting
Hamiltonian from the unitary transformation (33) or (34) of quantum states. A systematic
prescription for obtaining Hamiltonian for preassigned unitary transformations of quantum
states has been proposed in [15, 16]. That is by mapping the classical c-number transformation
in a coherent state basis onto quantum-mechanical operators of the Fock space and using the
IWOP technique to find the Hamiltonian. Let InG = itK , with K† = K, then the time-

evolution operator is R(t) = exp
{
it ã†

i RKa
}
. According to i ∂R(t)

∂t
= HR(t), we obtain the

corresponding Hermitian Hamiltonian

H = −
n∑

i,j=1

a
†
i Kij aj . (38)

Moreover, according to van Loock and Braunstein , s method [17], the state |〉s can
be generated from n-squeezed modes of the field emitted by the optical parametric optical
parametric oscillators (OPOs) below threshold (i.e., optical parametric amplifiers (OPAs)) and
appropriately balanced beam splitters. Let

B̂ij (θ) :

{
ai → ai cos θ + aj sin θ

aj → ai sin θ − aj cos θ,

N̂1,...,n = B̂n−1,n(π/4)B̂n−2,n−1(cos−1 1/
√

3) · · · B̂12(cos−1 1/
√

n). (39)

Applying the beam-splitter operator N̂1,...,n to a zero-momentum eigenstate in mode 1 and
N − 1 zero-position eigenstates in mode 2 to N, we can obtain the N-mode entangled
state |〉s . This state is an eigenstate with total momentum zero and relative positions
xi − xj = 0 (i, j = 1, 2, . . . , n).

In summary, we have shown that the operator U = exp
[
ir
(∑n−1

i=1 QiPi+1 + QnP1
)]

is an
N-mode squeezing operator for the N-mode quadratures exhibiting the standard squeezing; the
corresponding squeezed vacuum state in the N-mode Fock space is derived. The entanglement
involved in such a state is explained. The optical network for producing the N-mode squeezed
state is also constructed. The N-mode squeezed state and entangled state may have potential
use in theoretically analyzing N-partite quantum teleportation.

Appendix A

Here we give a rigorous proof for equation (13). Note that hn = n+gn and hk = gk for k �= n,

then we have
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f (λj ) = n +
n∑

k=1

gkλ
k
j

= n +
n∑

k=1

[
(−1)k

n∑
m=1

λk
m + λm

k

2
e2µmr

]
λk

j

= n +
1

2

n∑
m=1

[ n∑
k=1

(−1)k
(
λk

m + λm
k)

e2µmr . (A.1)

For the case n = 2p. Since (−1)k = emπ i/n, we see that

f (λj ) = n +
1

2

n∑
m=1

n∑
k=1

[
e1+ 2(m+j)

n
)kπ i + e1+ 2(j−m)

n
)kπ i] e2µmr . (A.2)

Set β1 = e1+ 2(m+j)

n
)kπ i, β1 = e1+ 2(j−m)

n
)kπ i, we have βn

1 = βn
2 = enπ i = 1. For 1 − λn =

(1 − λ)(1 + λ + ... + λn−1), we have
n∑

k=1

βk
1 =

n−1∑
k=0

βk
1 =

n∑
k=1

e1+ 2(m+j)

n
)k2π i =

{
0, 1 + 2(m+j)

n
�= even number

n, 1 + 2(m+j)

n
= even numberz.

(A.3)

As a result of equations (A1)–(A3), we obtain

f (λj ) =


n(1 + e2µp−j r ), 1 � j < p,

n(1 + e2µpr ), j = p, = n(1 + e2µj r ), 1 � j � 2p

n(1 + e2µp+j r ), p < j � p.

(A.4)
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