An N -mode squeezed vacuum state in Fock space as an entangled state

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2007 J. Phys. A: Math. Theor. 4010311
(http://iopscience.iop.org/1751-8121/40/33/022)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.144
The article was downloaded on 03/06/2010 at 06:10

Please note that terms and conditions apply.

An N-mode squeezed vacuum state in Fock space as an entangled state

Gang Ren ${ }^{1}$, Jiangang Qi 2 and Tong-qiang Song ${ }^{1}$
${ }^{1}$ Department of Physics, Ningbo University, Ningbo 315211, People's Republic of China
${ }^{2}$ Department of Mathematics, Shandong University at Weihai, 204209, People's Republic of China

Received 28 May 2007, in final form 5 July 2007
Published 1 August 2007
Online at stacks.iop.org/JPhysA/40/10311

Abstract

Using the technique of integration within the ordered product (IWOP) of operators, we show that the operator $U=\exp \left[\operatorname{ir}\left(\sum_{i=1}^{n-1} Q_{i} P_{i+1}+Q_{n} P_{1}\right)\right]$ is an N-mode squeezing operator for the N-mode quadratures exhibiting the standard squeezing. The corresponding squeezed vacuum state in N-mode Fock space is derived, and the entanglement involved in such a state is also explained. We present an optical network for producing the N-mode squeezed state.

PACS numbers: 42.50.Dv, 03.65.-w, 42.50.-p

1. Introduction

The entangled states and the entanglement have been important topic since 1970s due to their wide applications in optical communication, quantum teleportation and quantum state engineering [1-6]. Many efforts have been made to find new entangled states and a new form of squeezing operators so that new experimental implementation could be proposed [7-9]. In [10], the two-mode squeezed state, which is composed by the idler mode and signal mode resulting from a parametric down conversion amplifier, is a typical entangled state of continuous variable. Theoretically, it is constructed by the two-mode squeezing operator S acting on the vacuum state $|00\rangle$, i.e., $S|00\rangle=\sec h \lambda \exp \left(-a_{1}^{\dagger} a_{2}^{\dagger} \tanh \lambda\right)|00\rangle$, where λ is a squeezing parameter. Using the relation between the Bose operators $\left(a_{i}, a_{i}^{\dagger}\right)$ and the coordinate, momentum operators $Q_{i}=\frac{1}{\sqrt{2}}\left(a_{i}+a_{i}^{\dagger}\right)$, $P_{i}=\frac{1}{\mathrm{i} \sqrt{2}}\left(a_{i}-a_{i}^{\dagger}\right)$, Hongyi Fan found a new operator $S=\exp \left[i \lambda\left(Q_{1} P_{2}+Q_{2} P_{1}\right)\right]$, which actually squeezes the entangled state $|\eta\rangle$ [11, 12]. In [13], he extended his idea to three-mode and proved $U=\exp \left[\operatorname{ir}\left(Q_{1} P_{2}+Q_{2} P_{3}+\right.\right.$ $\left.\left.Q_{3} P_{1}\right)\right]$ is also a squeezing operator in the three-mode Fock space, and its corresponding squeezed vacuum state is also an entangled state. An interesting problem thus naturally arises. Can Fan's idea be extended to the N-mode case? That is to say, is the unitary operator
$U=\exp \left[\operatorname{ir}\left(\sum_{i=1}^{n-1} Q_{i} P_{i+1}+Q_{n} P_{1}\right)\right]$ also a squeezing operator in the N-mode Fock space? If yes, then what is its corresponding squeezed vacuum state? Is it also an entangled state?

The N-mode squeezing operator is a larger symmetry algebra of the Virasoro algebra. To answer these questions we must first derive the normal product form of U and then analyze if the squeezing exists, and how behaves the state $U|\mathbf{0}\rangle$ (where $|\mathbf{0}\rangle$ stands for the N-mode vacuum state). The paper is organized as follows. In section 2, we use the IWOP technique to expand normally ordered U. In sections 3-4 we examine the properties of the state $U|\mathbf{0}\rangle$, and find that it just makes the variances of the N-mode quadrature operators behave as that of the two-mode case. In section 5 we discuss how to design an optical network to realize the new N-mode squeezed vacuum state.

2. Normal product form of U

Because operators $Q_{1} P_{2}, Q_{2} P_{1}, \ldots, Q_{n-1} P_{n}$ and $Q_{n} P_{1}$ neither commute with each other nor make any close relation with the Lie algebra by themselves, it seems difficult to disentangle U. Thus we must appeal to the IWOP technique. We rewrite U as

$$
\begin{align*}
U & =\exp \left[i r Q_{i} A_{i j} P_{j}\right], \\
A & =\left(\begin{array}{cccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 1 \\
1 & 0 & 0 & \ldots & 0
\end{array}\right), \quad Q_{i}=\left(Q_{1}, Q_{2}, \ldots Q_{n}\right), P_{j}=\left(\begin{array}{l}
P_{1} \\
P_{2} \\
\vdots \\
P_{n}
\end{array}\right), \tag{1}
\end{align*}
$$

where the repeated indices represent the Einstein summation notation and A is an $n \times n$ matrix. Using the Baker-Hausdorff formula we see

$$
\begin{equation*}
U^{-1} Q_{k} U=\left(\mathrm{e}^{-r \tilde{A}}\right)_{k i} Q_{i}, \quad U^{-1} P_{k} U=\left(\mathrm{e}^{-r A}\right)_{k i} P_{i} \tag{2}
\end{equation*}
$$

Operating U on the N-mode coordinate eigenstate $|\vec{q}\rangle=\pi^{-n / 4} \exp \left[-\frac{1}{2} \widetilde{\sim} \underset{\sim}{\widetilde{q}} \vec{q}+\sqrt{2} \widetilde{\vec{q}} a^{\dagger}-\right.$ $\left.\frac{1}{2} \widetilde{a}^{\dagger} a^{\dagger}\right]|0\rangle$, (where $\widetilde{a^{\dagger}}=\left(a_{1}^{\dagger}, a_{2}^{\dagger}, \ldots, a_{n}^{\dagger}\right), \widetilde{\vec{q}}=\left(q_{1}, q_{2}, \ldots, q_{n}\right), \widetilde{A}, a^{\dagger}$ and \vec{q} are the transpositions of $\widetilde{a^{\dagger}}, \widetilde{q}, A$, respectively.), i.e.,

$$
\begin{equation*}
U|\vec{q}\rangle=|\Lambda|^{1 / 2}|\Lambda \vec{q}\rangle, \Lambda=\mathrm{e}^{-r \tilde{A}}, \quad|\Lambda| \equiv \operatorname{det} \Lambda \tag{3}
\end{equation*}
$$

and using

$$
\begin{equation*}
U=\int \mathrm{d}^{n} q U|\vec{q}\rangle\langle\vec{q}|=|\Lambda|^{1 / 2} \int \mathrm{~d}^{n} q|\Lambda \vec{q}\rangle\langle\vec{q}|, \quad U^{\dagger}=U^{-1} \tag{4}
\end{equation*}
$$

we have

$$
\begin{equation*}
U^{-1} Q_{k} U=|\Lambda| \int \mathrm{d}^{n} q U|\vec{q}\rangle\langle\Lambda \vec{q}| Q_{k} \int \mathrm{~d}^{n} q^{\prime} U\left|\Lambda \overrightarrow{q^{\prime}}\right\rangle\left\langle\overrightarrow{q^{\prime}}\right|=(\Lambda Q)_{k} \tag{5}
\end{equation*}
$$

which is consistent with equation (2). Thus U can be expressed in the coordinate representation,

$$
\begin{equation*}
U=\exp \left[\operatorname{ir} Q_{i} A_{i j} P_{j}\right]=\sqrt{\operatorname{dete}^{-r \tilde{A}}} \int \mathrm{~d}^{n} q|\Lambda \vec{q}\rangle\langle\vec{q}| . \tag{6}
\end{equation*}
$$

Using the IWOP technique, we put U into a normal ordering form

$$
\begin{align*}
U=\pi^{-n / 2}|\Lambda|^{1 / 2} & \int_{-\infty}^{\infty} \mathrm{d}^{n} q: \exp \left[-\frac{1}{2} \widetilde{\widetilde{q}}(1+\widetilde{\Lambda} \Lambda) \vec{q}+\sqrt{2} \widetilde{\widetilde{q}}\left(\tilde{\Lambda} a^{\dagger}+a\right)\right. \\
& \left.-\frac{1}{2}\left(\widetilde{a} a+\tilde{a}^{\dagger} a^{\dagger}\right)-\widetilde{a^{\dagger}} a\right] \tag{7}
\end{align*}
$$

By the mathematical formula

$$
\begin{equation*}
\int_{-\infty}^{\infty} \mathrm{d}^{n} x \exp [-\tilde{x} F x+\tilde{x} v]=\pi^{n / 2}(\operatorname{det} F)^{-1 / 2} \exp \left[\frac{1}{4} \widetilde{v} F^{-1} v\right], \tag{8}
\end{equation*}
$$

we perform the integration in equation (7) and obtain the explicit normal ordering form of U :
$U=|\Lambda|^{1 / 2}|N|^{-1 / 2} \exp \left[\frac{1}{2} \widetilde{a^{\dagger}}\left(\Lambda N^{-1} \widetilde{\Lambda}-I\right) a^{\dagger}\right]: \exp \left[\tilde{a^{\dagger}}\left(\Lambda N^{-1}-I\right) a\right]:$

$$
\begin{equation*}
\exp \left[\frac{1}{2} \widetilde{a}\left(N^{-1}-I\right) a\right] \tag{9}
\end{equation*}
$$

where $N=\frac{1}{2}(I+\tilde{\Lambda} \Lambda), \tilde{\Lambda}=\exp (-r A), \Lambda=\exp (-r \widetilde{A})$.

3. New N-mode squeezed vacuum state

Operating U in equation (9) on the N-mode vacuum state leads us to the new N-mode squeezed vacuum state

$$
\begin{equation*}
U|\mathbf{0}\rangle=|\Lambda|^{1 / 2}|N|^{-1 / 2} \exp \left[\frac{1}{2} \tilde{a}^{\dagger}\left(\Lambda N^{-1} \tilde{\Lambda}-I\right) a^{\dagger}\right]|\mathbf{0}\rangle \tag{10}
\end{equation*}
$$

In this section we proceed to give the explicit expression of $U|\mathbf{0}\rangle$.
When A is an even order, the eigenvalues of $-A$ are

$$
\begin{equation*}
\lambda_{m}=\mathrm{e}^{2 m \pi \mathrm{i} / n}(n=2 p) ; \quad m=1,2, \ldots, n, \quad p \in N, \tag{11}
\end{equation*}
$$

and the corresponding eigenvectors are

$$
\left(\begin{array}{c}
1 \tag{12}\\
-\lambda_{m} \\
\vdots \\
\left(-\lambda_{m}\right)^{n-1}
\end{array}\right), \quad \quad m=1,2, \ldots, n
$$

Then we have
$N=\frac{1}{2}(I+\tilde{\Lambda} \Lambda)=\frac{1}{2 n}\left(\begin{array}{lllll}h_{n} & h_{1} & h_{2} & \cdots & h_{n-1} \\ h_{1} & h_{n} & h_{1} & \cdots & h_{n-2} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ h_{n-1} & h_{n-2} & h_{n-3} & \cdots & h_{n}\end{array}\right)=\frac{1}{2 n} G$,
$h_{k}=g_{k}, h_{n}=n+g_{n}, g_{k}=(-1)^{k} \sum_{m=1}^{n} \cos \frac{2 m k \pi}{n} \mathrm{e}^{2 \mu_{m} r}$,
$\mu_{m}=\mathbb{R} \lambda_{m}=\cos \frac{2 m \pi}{n}, g_{k}=g_{n-k}, 1 \leqslant k \leqslant n$.
Let

$$
f(\lambda)=h_{n}+h_{1} \lambda+h_{2} \lambda^{2}+\cdots+h_{n-1} \lambda^{n-1}, \quad B=\left(\begin{array}{llll}
1 & 1 & \cdots & 1 \tag{14}\\
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{n} \\
\cdots & \cdots & \cdots & \cdots \\
\lambda_{1}^{n-2} & \lambda_{2}^{n-2} & \cdots & \lambda_{n}^{n-2} \\
\lambda_{1}^{n-1} & \lambda_{2}^{n-1} & \cdots & \lambda_{n}^{n-1}
\end{array}\right)
$$

the explicit expression of $f\left(\lambda_{j}\right)$ is

$$
\begin{gather*}
f\left(\lambda_{j}\right)=n+\frac{1}{2} \sum_{k=1}^{n} \sum_{m=1}^{n}\left[\mathrm{e}^{\left(1+\frac{2(m+j)}{n}\right) k \pi \mathrm{i}}+\mathrm{e}^{\left(1+\frac{2(j-m)}{n}\right) k \pi \mathrm{i}}\right] \mathrm{e}^{2 \mu_{m} r} \\
=n\left(1+\mathrm{e}^{2 \mu_{p+j} r}\right), \tag{15}
\end{gather*} 1 \leqslant j \leqslant 2 p . ~ \$ ~ 1 \leqslant j .
$$

Then equation (13) yields

$$
\begin{equation*}
\operatorname{det} N=\left(\frac{1}{2 n}\right)^{n} \operatorname{det} G=\frac{1}{2^{n}} \prod_{j=1}^{n}\left(1+\mathrm{e}^{2 \mu_{j} r}\right) \tag{16}
\end{equation*}
$$

It is easy to see $G B=B J, J=\operatorname{diag}\left(f\left(\lambda_{1}\right), f\left(\lambda_{2}\right), \ldots, f\left(\lambda_{n}\right)\right)$ and $G^{-1}=B J^{-1} B^{-1}$. Now using equations (14) and (15), we have

$$
G^{-1}=\frac{1}{n^{2}}\left(\begin{array}{llll}
\sum_{j=1}^{n} \frac{1}{1+\mathrm{e}^{2 \mu_{p+j} j^{r}}} & \sum_{j=1}^{n} \frac{\lambda_{j}}{1+\mathrm{e}^{2 \mu_{p+j} r}} & \cdots & \sum_{j=1}^{n} \frac{\lambda_{j}^{n-1}}{1+\mathrm{e}^{2 \mu_{p+j} j^{r}}} \tag{17}\\
\sum_{j=1}^{n} \frac{\lambda_{j}}{1+\mathrm{e}^{2 \mu_{p+j} j^{r}}} & \sum_{j=1}^{n} \frac{1}{1+\mathrm{e}^{2 \mu_{p+j} r}} & \cdots & \sum_{j=1}^{n} \frac{\lambda_{j}^{n-2}}{1+\mathrm{e}^{2 \mu_{p+j} j^{r}}} \\
\vdots & \vdots & \vdots & \vdots \\
\sum_{j=1}^{n} \frac{\lambda_{j}^{n-1}}{1+\mathrm{e}^{2 \mu_{p+j j^{r}}}} & \sum_{j=1}^{n} \frac{\lambda_{j}^{n-2}}{1+\mathrm{e}^{2 \mu_{p+j} r}} & \cdots & \sum_{j=1}^{n} \frac{1}{1+\mathrm{e}^{2 \mu_{p+j j^{r}}}}
\end{array}\right) .
$$

For $N^{-1}=2 n G^{-1}$ and $\Lambda N^{-1} \widetilde{\Lambda}-I=I-N^{-1}$, then

$$
\begin{equation*}
\tilde{a}^{\dagger} N^{-1} a^{\dagger}=\frac{2}{n} \sum_{m, j, k=1}^{n} \frac{\mathbb{R}\left(\bar{\lambda}_{k}^{j-m}\right)}{1+\mathrm{e}^{2 \mu_{p+k} r}} a_{m}^{\dagger} a_{j}^{\dagger}=\frac{2}{n} \sum_{m, j, k=1}^{n} \frac{\left(\cos \frac{2 k \pi}{n}\right)^{j-m}}{1+\mathrm{e}^{2 \mu_{p+k} r}} a_{m}^{\dagger} a_{j}^{\dagger} . \tag{18}
\end{equation*}
$$

It follows that

$$
\begin{align*}
U|\mathbf{0}\rangle & =C \exp \left[\frac{1}{2} \tilde{a}^{\dagger}\left(I-N^{-1}\right) a^{\dagger}\right]|\mathbf{0}\rangle \\
& =C \exp \left(-\frac{1}{2} \sum_{m=1}^{n} a_{m}^{2}+\frac{1}{n} \sum_{m, j, k=1}^{n} \frac{\left(\cos \frac{2 k \pi}{n}\right)^{j-m}}{1+\mathrm{e}^{2 \mu_{p+k} r}} a_{m}^{\dagger} a_{j}^{\dagger}\right)|\mathbf{0}\rangle \tag{19}
\end{align*}
$$

where $C=|\Lambda|^{1 / 2}|N|^{-1 / 2}=\left[\frac{1}{2^{n}} \prod_{j=1}^{n}\left(1+\mathrm{e}^{2 \mu_{k} r}\right)\right]^{-\frac{1}{2}}$.
Especially, when $\mathrm{e}^{r} \rightarrow 0$,
$\left.U|\mathbf{0}\rangle\right|_{r \rightarrow-\infty} \sim \exp \left[-\frac{1}{2} \sum_{m=1}^{n} a_{m}^{\dagger 2}+\frac{1}{n} \sum_{m, j, k=1}^{n}(\cos 2 k \pi)^{j-m} a_{m}^{\dagger} a_{j}^{\dagger}\right]|\mathbf{0}\rangle \equiv| \rangle_{s e}$.
Similarly, if n is an odd number, the eigenvalues of $-A$ are

$$
\begin{equation*}
\lambda_{m}=\mathrm{e}^{(1+2 m) \pi \mathrm{i} / n}, \quad m=1,2, \ldots, n, \quad n=2 p+1 \tag{21}
\end{equation*}
$$

Using

$$
\begin{align*}
& f\left(\lambda_{j}\right)=n\left(1+\mathrm{e}^{2 \mu_{p+j} r}\right), \\
& B=\left(\begin{array}{llll}
1 & 1 & \cdots & 1 \\
-\lambda_{1} & -\lambda_{2} & \cdots & -\lambda_{n} \\
\cdots & \cdots & \cdots & \cdots \\
\left(-\lambda_{1}\right)^{n-2} & \left(-\lambda_{2}\right)^{n-2} & \cdots & \left(-\lambda_{n}\right)^{n-2} \\
\left(-\lambda_{1}\right)^{n-1} & \left(-\lambda_{2}\right)^{n-1} & \cdots & \left(-\lambda_{n}\right)^{n-1}
\end{array}\right), \tag{22}
\end{align*}
$$

and $G^{-1}=B J^{-1} B^{-1}$, we have

$$
G^{-1}=\frac{1}{n^{2}}\left(\begin{array}{llll}
\sum_{j=1}^{n} \frac{1}{1+\mathrm{e}^{2 \mu_{p+j} j^{r}}} & \sum_{j=1}^{n} \frac{-\lambda_{j}}{1+\mathrm{e}^{2 \mu_{p+j} j^{r}}} & \cdots & \sum_{j=1}^{n} \frac{\left(-\lambda_{j}\right)^{n-1}}{1+\mathrm{e}^{2 \mu_{p+j} r}} \tag{23}\\
\sum_{j=1}^{n} \frac{-\lambda_{j}}{1+\mathrm{e}^{2 \mu_{p+j} r} j^{r}} & \sum_{j=1}^{n} \frac{1}{1+\mathrm{e}^{2 \mu_{p+j} j^{r}}} & \cdots & \sum_{j=1}^{n} \frac{\left(-\lambda_{j}\right)^{n^{-2}}}{1+\mathrm{e}^{\mu_{p+j} r}} \\
\vdots & \vdots & \vdots & \vdots \\
\sum_{j=1}^{n} \frac{\left(-\lambda_{j}\right)^{n-1}}{1+\mathrm{e}^{2 \mu_{p+j} j^{r}}} & \sum_{j=1}^{n} \frac{\left(-\lambda_{j}\right)^{n-2}}{1+\mathrm{e}^{2 \mu_{p+j} r}} & \cdots & \sum_{j=1}^{n} \frac{1}{1+\mathrm{e}^{2 \mu_{p+j} r}}
\end{array}\right) .
$$

It then follows
$\tilde{a}^{\dagger} N^{-1} a^{\dagger}=\frac{2}{n} \sum_{m, j, k=1}^{n}(-1)^{j-m} \frac{\mathbb{R}\left(\bar{\lambda}_{k}^{j-m}\right)}{1+\mathrm{e}^{2 \mu_{p+k} r}} a_{m}^{\dagger} a_{j}^{\dagger}=\frac{2}{n} \sum_{m, j, k=1}^{n} \frac{\left.\left[-\cos \frac{(1+2 k) \pi}{n}\right)\right]^{j-m}}{1+\mathrm{e}^{2 \mu_{p+k} r}} a_{m}^{\dagger} a_{j}^{\dagger}$,
and
$U|\mathbf{0}\rangle=|\Lambda|^{1 / 2}|N|^{-1 / 2} \exp \left\{-\frac{1}{2} \sum_{m=1}^{n} a_{m}^{\dagger 2}+\frac{1}{n} \sum_{m, j, k=1}^{n} \frac{\left[-\cos \frac{(1+2 k) \pi}{n}\right]^{j-m}}{1+\mathrm{e}^{2 \mu_{p+k} r}} a_{m}^{\dagger} a_{j}^{\dagger}\right\}|\mathbf{0}\rangle$,
where $C=|\Lambda|^{1 / 2}|N|^{-1 / 2}=\left[\frac{1}{2^{n}} \prod_{j=1}^{n}\left(1+\mathrm{e}^{2 \mu_{k} r}\right)\right]^{-\frac{1}{2}}$.
Especially, when $\mathrm{e}^{r} \rightarrow 0$,
$\left.U|0\rangle\right|_{r \rightarrow-\infty} \sim \exp \left\{-\frac{1}{2} \sum_{m=1}^{n} a_{m}^{\dagger 2}+\frac{1}{n} \sum_{m, j, k=1}^{n}\left[-\cos \frac{(1+2 k) \pi}{n}\right]^{j-m} a_{m}^{\dagger} a_{j}^{\dagger}\right\}|\mathbf{0}\rangle \equiv| \rangle_{s o}$.
Comparing equations (20) and (26), we obtain

$$
\begin{equation*}
\left.U|\mathbf{0}\rangle\right|_{r \rightarrow-\infty} \sim \exp \left[\frac{2}{n} \sum_{k>l=1}^{n} a_{l}^{\dagger} a_{k}^{\dagger}-\sum_{j=1}^{n} \frac{n-2}{2 n}\left(a_{j}^{\dagger}\right)^{2}\right]|\mathbf{0}\rangle \equiv| \rangle_{s}, \tag{27}
\end{equation*}
$$

where n is an arbitrary integer.
It is interesting to observe that $\left\rangle_{s}\right.$ is just the common eigenvector the N-compatible Jacobian operators in an N -body case with zero eigenvalue [14], i.e.,
$\left.P\left\rangle_{s}=\sum_{i=1}^{n} p_{i}\right|\right\rangle_{s}=0 ; \quad \xi_{j}| \rangle_{s}=\left\{\left[\sum_{k=j+1}^{n} \mu_{k}\right]^{-1} \sum_{k=j+1}^{n} \mu_{k} Q_{k}-Q_{j}\right\}| \rangle_{s}=0$,
as $\left[P, \xi_{j}\right]=0, j=1,2, \ldots, n-1, \mu_{k}=m_{k} / M, M=\sum_{i=1}^{n} m_{i}$. Since the common eigenvector of N-compatible Jacobian operators is an entangled state, the state $\left\rangle_{s}\right.$ is also an entangled state. This state is experimentally attainable by the use of momentum-squeezed coherence states and position-squeezed coherence states and balanced optical BSs, it tends toward the general perfect EPR-type entangled state in the limit of infinite squeezing. The details will be discussed in section 5 .

4. Variances of the \boldsymbol{n}-mode quadratures

The quadratures in the N -mode case should be defined as
$X_{1}=\frac{1}{\sqrt{2 n}} \sum_{k=1}^{n} Q_{k}, \quad X_{2}=\frac{1}{\sqrt{2 n}} \sum_{k=1}^{n} P_{k}, \quad\left[X_{1}, X_{2}\right]=\frac{\mathrm{i}}{2}$.
The expectation values of the quadratures in the state $\left\rangle_{s}\right.$ are $\left\langle X_{1}\right\rangle=\left\langle X_{2}\right\rangle=0$; we see that the corresponding variance is

$$
\begin{align*}
& \left(\Delta X_{1}\right)^{2}={ }_{s}\left\langle\mid x_{1}^{2}\right\rangle_{s}=\frac{1}{4 n} \sum_{j i}(\Lambda \tilde{\Lambda})_{i j}=\frac{1}{4} \mathrm{e}^{-2 r}, \tag{29}\\
& \left(\Delta X_{2}\right)^{2}={ }_{s}\langle | x_{2}^{2}| \rangle_{s}=\frac{1}{4 n} \sum_{j i}(\Lambda \tilde{\Lambda})_{i j}^{-1}=\frac{1}{4} \mathrm{e}^{2 r}, \tag{30}
\end{align*}
$$

which has the similar standard form to the two-mode case. Equations (29) and (30) clearly indicate that U is the correct N-mode squeezing operator for the N-mode quadratures in equation (28).

5. Optical network for producing the state $\left\rangle_{s}\right.$

The basic operation of optical devices (beam splitters, optical fiber, and phase shifter) based on quantum optics components is the transformation of a set of incoming states into another set by a unitary transformation. Such transformations can be performed by using optical networks. In this section we design such an optical network that the light beams (one mode of zero-position eigenstate $|x=0\rangle_{1}$ and the other modes of zero-momentum eigenstates $|p=0\rangle_{2} \otimes|p=0\rangle_{3} \otimes \cdots \otimes|p=0\rangle_{n}$) entering the N-input ports of this network will be changed into an N-partite entangled state. That is to say that the network plays the role of transforming N-single-mode-squeezed states ($n-1$ light fields maximally squeezed in the P direction and one light field in the X direction) incident on the network to the entangled state $\left\rangle_{s}\right.$ in equation (27). In the Fock space $\left.| x=0\right\rangle_{i}$ and $|p=0\rangle_{i}$ are expressed as

$$
\begin{align*}
& |x=0\rangle_{i} \backsim \exp \left(-\frac{1}{2} a_{i}^{\dagger 2}\right)|0\rangle_{i} \\
& |p=0\rangle_{i} \backsim \exp \left(\frac{1}{2} a_{i}^{\dagger 2}\right)|0\rangle_{i} . \tag{31}
\end{align*}
$$

Hence the function of this optical network can be represented by a unitary operator R, and R should meet the following requirement:

$$
\begin{align*}
R \mid x & =0\rangle_{1} \otimes|p=0\rangle_{2} \otimes|p=0\rangle_{3} \otimes \cdots \otimes|p=0\rangle_{n} \rightarrow| \rangle_{s} \\
& =\exp \left[\frac{2}{n} \sum_{k>l=1}^{n} a_{l}^{\dagger} a_{k}^{\dagger}-\sum_{j=1}^{n} \frac{n-2}{2 n}\left(a_{j}^{\dagger}\right)^{2}\right]|\mathbf{0}\rangle, \tag{32}
\end{align*}
$$

which is just equation (27) as indicated. That is to say

$$
\begin{equation*}
R\left(a_{1}^{\dagger 2}-a_{2}^{\dagger 2}-\cdots-a_{n}^{\dagger 2}\right) R^{-1}=R \widetilde{a}^{\dagger} E a^{\dagger} R^{-1}=\widetilde{a}^{\dagger} B a^{\dagger} \tag{33}
\end{equation*}
$$

where

$$
E=\left(\begin{array}{llll}
1 & 0 & \ldots & 0 \\
0 & -1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & -1
\end{array}\right) ; \quad B=\frac{1}{n}\left(\begin{array}{llll}
2-n & 2 & \ldots & 2 \\
2 & 2-n & \ldots & 2 \\
\vdots & \vdots & \vdots & \vdots \\
2 & 2 & \ldots & 2-n
\end{array}\right)
$$

In order to solve R, we suppose

$$
\begin{equation*}
R \widetilde{a}^{\dagger} R^{-1}=\widetilde{a}^{\dagger} \widetilde{G}, \quad R a R^{-1}=G_{i j} a_{j}=\overline{a_{i}^{\prime}} \tag{34}
\end{equation*}
$$

Then from equation (34), we see that G must satisfy the matrix equation

$$
\begin{equation*}
\widetilde{G} E G=B . \tag{35}
\end{equation*}
$$

Its solution is an orthogonal matrix

$$
G=\left(\begin{array}{ccccc}
\frac{1}{\sqrt{n}} & \sqrt{\frac{n-1}{n}} & 0 & \cdots & 0 \tag{36}\\
\frac{1}{\sqrt{n}} & -\frac{1}{\sqrt{n(n-1)}} & \sqrt{\frac{n-2}{n-1}} & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\frac{1}{\sqrt{n}} & -\frac{1}{\sqrt{n(n-1)}} & -\frac{1}{\sqrt{(n-1)(n-2)}} & \cdots & -\frac{1}{\sqrt{2}}
\end{array}\right)
$$

where $G_{i, 1}=\frac{1}{\sqrt{n}},(i=1,2, \ldots, n) ; G_{i, i+1}=\sqrt{\frac{n-i}{n-i+1}},(i=1,2, \ldots, n-1), G_{i j}=$ $-\frac{1}{\sqrt{(n-j+1)(n-j+2)}},(i=2,3, \ldots, n, j=2,3, \ldots, i)$, the others $G_{i j}=0$.

The corresponding R may be constructed by the coherent state representation and the orthogonal matrix G :

$$
\begin{align*}
R & =\int \prod_{i=1}^{n} \frac{\mathrm{~d}^{2} z_{i}}{\pi}\left|G_{i j} z i_{j}\right\rangle\left\langle z_{i}\right| \\
& =\int \prod_{i=1}^{n} \frac{\mathrm{~d}^{2} z_{i}}{\pi}: \exp \left[\sum_{i=1}^{n}\left(-\left|z_{i}\right|^{2}+\sum_{j=1}^{n} a_{i}^{\dagger} G_{i j} z_{j}\right)+z_{i}^{*} a_{i}-a_{i}^{\dagger} a_{i}\right]: \\
& =: \exp \left[\widetilde{a_{i}^{\dagger}}(G-I) a\right]:=\exp \left[\tilde{a_{i}^{\dagger}}(\operatorname{In} G) a\right] . \tag{37}
\end{align*}
$$

To obtain the optical transfer evolution in equations (33) and (34), we extract an interacting Hamiltonian from the unitary transformation (33) or (34) of quantum states. A systematic prescription for obtaining Hamiltonian for preassigned unitary transformations of quantum states has been proposed in $[15,16]$. That is by mapping the classical c-number transformation in a coherent state basis onto quantum-mechanical operators of the Fock space and using the IWOP technique to find the Hamiltonian. Let $\operatorname{In} G=\mathrm{i} t K$, with $K^{\dagger}=K$, then the timeevolution operator is $R(t)=\exp \left\{\underset{\mathrm{i} t a_{i}^{\dagger}}{ } R K a\right\}$. According to $\mathrm{i} \frac{\partial R(t)}{\partial t}=H R(t)$, we obtain the corresponding Hermitian Hamiltonian

$$
\begin{equation*}
H=-\sum_{i, j=1}^{n} a_{i}^{\dagger} K_{i j} a_{j} \tag{38}
\end{equation*}
$$

Moreover, according to van Loock and Braunstein, s method [17], the state $\left\rangle_{s}\right.$ can be generated from n-squeezed modes of the field emitted by the optical parametric optical parametric oscillators (OPOs) below threshold (i.e., optical parametric amplifiers (OPAs)) and appropriately balanced beam splitters. Let

$$
\begin{align*}
& \widehat{B}_{i j}(\theta):\left\{\begin{array}{l}
a_{i} \rightarrow a_{i} \cos \theta+a_{j} \sin \theta \\
a_{j} \rightarrow a_{i} \sin \theta-a_{j} \cos \theta,
\end{array}\right. \\
& \widehat{N}_{1, \ldots, n}=\widehat{B}_{n-1, n}(\pi / 4) \widehat{B}_{n-2, n-1}\left(\cos ^{-1} 1 / \sqrt{3}\right) \cdots \widehat{B}_{12}\left(\cos ^{-1} 1 / \sqrt{n}\right) \tag{39}
\end{align*}
$$

Applying the beam-splitter operator $\widehat{N}_{1, \ldots, n}$ to a zero-momentum eigenstate in mode 1 and $N-1$ zero-position eigenstates in mode 2 to N, we can obtain the N-mode entangled state $\left\rangle_{s}\right.$. This state is an eigenstate with total momentum zero and relative positions $x_{i}-x_{j}=0(i, j=1,2, \ldots, n)$.

In summary, we have shown that the operator $U=\exp \left[\operatorname{ir}\left(\sum_{i=1}^{n-1} Q_{i} P_{i+1}+Q_{n} P_{1}\right)\right]$ is an N-mode squeezing operator for the N-mode quadratures exhibiting the standard squeezing; the corresponding squeezed vacuum state in the N-mode Fock space is derived. The entanglement involved in such a state is explained. The optical network for producing the N-mode squeezed state is also constructed. The N-mode squeezed state and entangled state may have potential use in theoretically analyzing N-partite quantum teleportation.

Appendix A

Here we give a rigorous proof for equation (13). Note that $h_{n}=n+g_{n}$ and $h_{k}=g_{k}$ for $k \neq n$, then we have

$$
\begin{align*}
f\left(\lambda_{j}\right) & =n+\sum_{k=1}^{n} g_{k} \lambda_{j}^{k} \\
& =n+\sum_{k=1}^{n}\left[(-1)^{k} \sum_{m=1}^{n} \frac{\lambda_{m}^{k}+{\overline{\lambda_{m}}}^{k}}{2} \mathrm{e}^{2 \mu_{m} r}\right] \lambda_{j}^{k} \\
& =n+\frac{1}{2} \sum_{m=1}^{n}\left[\sum_{k=1}^{n}(-1)^{k}\left(\lambda_{m}^{k}+{\overline{\lambda_{m}}}^{k}\right) \mathrm{e}^{2 \mu_{m} r} .\right. \tag{A.1}
\end{align*}
$$

For the case $n=2 p$. Since $(-1)^{k}=\mathrm{e}^{m \pi \mathrm{i} / n}$, we see that

$$
\begin{equation*}
f\left(\lambda_{j}\right)=n+\frac{1}{2} \sum_{m=1}^{n} \sum_{k=1}^{n}\left[\mathrm{e}^{\left.1+\frac{2(m+j)}{n}\right) k \pi \mathrm{i}}+\mathrm{e}^{\left.1+\frac{2(j-m)}{n}\right) k \pi \mathrm{i}}\right] \mathrm{e}^{2 \mu_{m} r} . \tag{A.2}
\end{equation*}
$$

Set $\beta_{1}=\mathrm{e}^{\left.1+\frac{2(m+j)}{n}\right) k \pi \mathrm{i}}, \beta_{1}=\mathrm{e}^{\left.1+\frac{2(j-m)}{n}\right) k \pi \mathrm{i}}$, we have $\beta_{1}^{n}=\beta_{2}^{n}=\mathrm{e}^{n \pi \mathrm{i}}=1$. For $1-\lambda^{n}=$ $(1-\lambda)\left(1+\lambda+\ldots+\lambda^{n-1}\right)$, we have

$$
\sum_{k=1}^{n} \beta_{1}^{k}=\sum_{k=0}^{n-1} \beta_{1}^{k}=\sum_{k=1}^{n} \mathrm{e}^{\left.1+\frac{2(m+j)}{n}\right) k^{2} \pi \mathrm{i}}= \begin{cases}0, & 1+\frac{2(m+j)}{n} \neq \text { even number } \tag{A.3}\\ n, & 1+\frac{2(m+j)}{n}=\text { even number } z\end{cases}
$$

As a result of equations (A1)-(A3), we obtain
$f\left(\lambda_{j}\right)=\left\{\begin{array}{ll}n\left(1+\mathrm{e}^{2 \mu_{p-j} r}\right), & 1 \leqslant j<p, \\ n\left(1+\mathrm{e}^{2 \mu_{p} r}\right), & j=p, \\ n\left(1+\mathrm{e}^{2 \mu_{p+j} r}\right), & p<j \leqslant p .\end{array}=n\left(1+\mathrm{e}^{2 \mu_{j} r}\right), \quad 1 \leqslant j \leqslant 2 p\right.$

References

[1] Ekert A and Josza R 1996 Rev. Mod. Phys. 68733
[2] DiVincenzo D P 1995 Science 270255
[3] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 692881
[4] Vaidman L 1994 Phy. Rev. A 491473
[5] Furusawa A, Sorensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E 1998 Science 28223
[6] Braunstein S L and Kimble H J 1998 Phys. Rev. Lett. 80869
[7] Kuzmich A, Mandel L and Bigelow N P 2000 Phys. Rev. Lett. 851594
[8] Duan L-M, Cirac J I, Zoller P and Polzik E S 2000 Phys. Rev. Lett. 855643
[9] Feng X-L, Li R-X and Xu Z-Z 2005 Phys. Rev. A 71032335
[10] Loudon R and Knight P L 1987 J. Mod. Opt. 34709
[11] Fan H 2001 Phys. Lett. A 28681
[12] Fan H and Fan Y 1996 Phys. Rev. A 54958
[13] Fan H and Yu G 2002 Phys. Rev. A 65033829
[14] Albeverio S, Fei S-M and Song T-q 2005 Phys. Lett. A 338182
[15] Fan H and Xiao M 1997 Quantum Semiclass. Opt. 953
[16] Fan H 1994 Commun. Theor. Phys. 21509
[17] van Loock P and Braunstein S L 2000 Phys. Rev. Lett. 843482

